
Plan-graph Based Heuristics for Conformant Probabilistic Planning

Sailesh Ramakrishnan Martha E. Pollack David E. Smith
University of Michigan Dept. of Computer Science Computational Sciences Division

and NASA Ames Research Ctr. University of Michigan NASA Ames Research Ctr
Moffett Field, CA 94035 Ann Arbor, MI 48109 Moffett Field, CA 94035

sailesh@email.arc.nasa.gov pollackm@eecs.umich.edu de2smith@email.arc.nasa.gov

Abstract

In this paper, we introduce plan-graph based heuristics to
solve a variation of the conformant probabilistic planning
(CPP) problem. In many real-world problems, it is the case
that the sensors are unreliable or take too many resources
to provide knowledge about the environment. These do-
mains are better modeled as conformant planning problems.
POMDP based techniques are currently the most successful
approach for solving CPP but have the limitation of state-
space explosion. Recent advances in deterministic and con-
formant planning have shown that plan-graphs can be used
to enhance the performance significantly. We show that this
enhancement can also be translated to CPP. We describe our
process for developing the plan-graph heuristics and estimat-
ing the probability of a partial plan. We compare the per-
formance of our planner PVHPOP when used with diffrent
heuristics. We also perform a comparison with a POMDP
solver to show over a order of magnitude improvement in per-
formance.

Introduction
In this paper, we develop plan-graph based heuristics to ad-
dress a variation of the conformant probabilistic planning
(CPP) problem. Informally, the conformant planning prob-
lem is the problem of finding an unconditional sequence of
actions that guarantees the successful achievement of the
goal after executing that sequence in an environment that
is non-observable. The probabilistic version (CPP) maxi-
mizes the probability of the goal being true. Actions have
preconditions and effects which can be conditional. CPP is
the conformant planning problem with numeric probabilities
for the effects of actions. In this paper we focus on a vari-
ation of CPP where the objective is to find a plan that has
a probability of achieving the goal that is above a particular
threshold, similar to Buridan (Kushmerick, Hanks, & Weld
1995) and Tgraphplan (Blum & Langford 1999).

In many real-world problems, it is the case that the sensors
are unreliable or take too many resources to provide knowl-
edge about the environment. These domains are better mod-
eled as conformant planning problems rather than having to
model the complicated sensors. It may be useful however to
find a plan that has a reasonably good chance of achieving
the goal rather than spending a lot of computational effort to
find the plan that is most likely to succeed.

Previous approaches to CPP can be broadly classified into
MDP-based and other (non-MDP) approaches. Non observ-
able MDP’s (NOMDP’s) can represent CPP and currently
are the most successful approach. A popular POMDP solver
pomdp-solve(Cassandra) which can also solve NOMDPs
(since they are a degenerate case of POMDPs) has out-
performed other approaches without sacrificing the optimal-
ity of the solution found. Other approaches include the
probabilistic versions of Partial Order Causal Link (POCL)
planning (CBuridan(Draper, Hanks, & Weld 1994), Mahinur
(Onder & Pollack 1999), Weaver (Blythe 1998)), SAT Plan-
ning (ZANDER(Majercik & Littman 1998)), GraphPlan
(Pgraphplan and Tgraphplan(Blum & Langford 1999)) and
more recently Constraint Satisfaction (CSP) techniques (CP-
Plan(Hyfil & Bacchus 2003)). These planners can also be
categorized based on whether they use a state-space repre-
sentation (pomdp-solve, ZANDER, CPPlan), a plan-space
representation (Buridan, Mahinur, Weaver) or an abstracted
state-space representation (Pgraphplan and Tgraphplan).

There has also been a lot of research in conformant plan-
ning (without quantitative probabilities). Notably, Bryce and
Kambhampati(Bryce & Kambhampati 2003) have shown
that plan-graph based heuristics can make a tremendous im-
pact in the scalability of such planners. Their results show
atleast one order of magnitude improvement in the time
taken to solve the conformant planning problem compared
to CGP(Smith & Weld 1998) and MBP(Bertoli et al. 2001).

In this paper, we present a new probabilistic POCL plan-
ner called PVHPOP which perfoms significantly better than
other CPP planners. The key enhancement to previous
POCL approaches is the use of plan-graph based heurisitics.
PVHPOP is based on VHPOP(Younes & Simmons 2002), a
POCL planner that performed favorably in the 2002 IPC.

PVHPOP searches the plan-space guided by a plan rank-
ing heuristic based on a relaxed plan-graph. The relaxed
plan-graph is used to provide an estimate of the probabil-
ity of achieving an individual literal; these estimates are
then combined to evaluate the probability of a partial plan.
This probability estimate is then used in a ranking function
to rank various partial plans which guides the search over
plans.

This paper is organized similar to (Hyfil & Bacchus
2003), which compared CPPlan to state-of-the-art CPP plan-
ners. In the next section, we begin by motivating the use

1

of plan-graphs for probabilistic planning, then introduce the
PVHPOP algorithm and finally perform a comparison to the
POMDP solver as well as CPPlan.

Motivation
Our motivation for using a plan-graph based heuristic is de-
rived from the following observations. POCL based prob-
abilistic planners have performed poorly in general due to
non-informative heuristics that have not guided the planners
to good plans. Further research in probabilistic POCL plan-
ning has enhanced the techniques for assessing and improv-
ing the probability of plans, but there has not been significant
improvement in heuristics.

Planners based on MDP’s use a state space based rep-
resentation to identify a policy from states to actions that
maximizes the expected utility. One main drawback of this
approach is that the state space tends to become extremely
large even for moderately sized problems. However algo-
rithms such as value and policy iteration produce optimal
policies, when sufficient time and space is available.

More recently, deterministic POCL planning has been re-
emerging as a viable technique due to the use of better
heuristics. Plan-graphs and plan-graph based heuristics have
shown significant promise. In the AIPS 2002 planning com-
petition, almost all the competitive planning systems used a
plan-graph as a basis for deriving heuristics to guide their
search. Even though all the domains in the planning com-
petition were deterministic, this encourages further study of
the use of plan-graphs to guide search in plan space.

In deterministic conformant planning, Bryce and Kamb-
hampati showed that using plan-graph based heurisitics, the
performance of CAltCAlt, a POCL planner can be improved
by at least an order of magnitude. This result significantly
encourages the use of plan-graph heuristics in probabilistic
conformant planning.

Conformant Probabilistic Planning Problem
A probabilistic planning domain is a pair

���������
, where

�
is a set of propositions and

�
is a set of actions that operate

on these propositions. These actions have uncertain effects
each occurring with a particular probability. These effects
can be conditional on the truth of other propositions.

The input to CPP is a 3-tuple
�
	���������

, where
	��

is a
set of propositions that define the initial state,

�
is a set of

propositions that define the goal state and
�

is a probability
threshold (0 � � � 1). Solving a CPP problem involves
finding a plan (an unconditional sequence of actions) that
has a probability greater than or equal to

�
of reaching a goal

state from the initial state. What makes this planning prob-
lem conformant is that the environment is completely unob-
servable. Hence exogenous events as well as the effects of
actions are not observable. Traditionally CPP has been de-
fined as a maximization problem whereas in our variation,
we define it is a threshold satisfaction problem.

Here is an example of an action description with the asso-
ciated probability information:

(:action fast-welding

:parameters (?p1 ?p2 - part)
:cost 100
:preconditions
(or (and

(not (painted ?p1))
(not (painted ?p1)))

(and
(smooth ?p1)
(smooth ?p2)))

:effect
(and

(when (and (clean ?p1)
(clean ?p2))

(prob 0.9
(welded ?p1 ?p2)))

(when (not (clean ?p1))
(prob 0.5

(welded ?p1 ?p2)))
(when (not (clean ?p2))

(prob 0.5
(welded ?p1 ?p2)))

(when (and
(not (clean ?p1))
(not (clean ?p2)))

(prob 0.3
(welded ?p1 ?p2)))))

The action of fast-welding has two parameters ?p1 and
?p2, namely the two parts to be welded. These parameters
can be typed as shown in the example or untyped. The set
of preconditions describe when this action can be performed
which in this case is either when both the parts are unpainted
or both parts are smooth. The effects which are conditional
express the various conditions in which the two parts are
welded with different probabilities. The various conditional
sections have to be exhaustive to cover every situation that
impacts the probability of the two parts being welded. Fi-
nally, the last 5 lines of the example describe the probability
of asserting each of the 4 effects and the cost of this action
based on the values of the parameters.

Using a Plan-Graph for Heuristics
A Plan-graph is typically a bi-partite graph with alternating
proposition and actions levels. The graph starts with all the
propositions that are true in the initial state. The next level,
which is an action level, contains all the actions that can
be performed given the propositions in the previous level.
This is followed by another proposition level consisting of
all the propositions made true at this level including any
new propositions made true by the actions in the previous
level. There are arcs between propositions and actions that
need those propositions as preconditions. Similarly, there
are arcs between actions and the propositions that are pro-
duced as effects of those actions. An example plan-graph is
shown in figure 1. The ellipses represent propositions and
the rectangles represent actions.

A mutual exclusion constraint or mutex is used to mark

2

Clean(p) Clean(p)

p = 0.98

Milled(p)

Slow−milling(p)
p = 0.9

p = 0.8

p = 0.7

p = 0.8

p = 1.0 p = 1.0 p = 1.0

p = 0.98

p = 0.68

p = 0.78

Level 0 Level 1 Level 2

Fast−milling(p)
Milled(p)

Clean(p)

Painted(p)

Finished(p)

Process(p)

Figure 1: Estimating probabilities using a plan-graph

pairs of propositions that cannot be both true and pairs of
actions that cannot be performed at the same time. In a re-
laxed plan-graph the propositions negated by actions are not
added. Hence negative effects are not represented in this
graph. The graph is usually developed until quiescence, i.e.
until no new actions are applicable and no new propositions
are generated.

Plan-graphs have been used to provide distance metrics.
The level at which a proposition first appears is the mini-
mum number of actions needed to assert that proposition.
Similarly, an estimate of the effort needed to achieve a set of
propositions can be made by summing the effort for each in-
dividual proposition. For example, in the plan-graph show in
figure 1, the distance estimate for the propositions clean(p)
and painted(p) is 2 (0+2).

Using the sum may be an overestimate since actions can
produce more than one proposition as in the case of the pro-
cess(p) action. Nonetheless, these estimates can be used to
evaluate a partial plan and guide a planner in selecting and
refining plans that minimize these distance estimates and
hence more likely to lead to the goal.

Similar to assessing the amount of effort to assert a propo-
sition, the probability of a proposition being true can also be
propagation along a plan-graph by multiplying the probabil-
ities of various effects needed to produce that proposition.
Assuming independence, if there are two ways of getting
proposition A each with probability ��� and ��� respectively,
then the aggregate probability can be calculated as:

�����
	 ������������������ 	�� ��������� � (1)

Again, since propositions can share common actions, an
admissible estimate of the probability is to take the maxi-
mum, i.e. ! �#"$� � � � � � � . Consider the example show in fig-
ure 1. clean(p) is present in the initial state and hence has a
probability of 1.0. There are two independent actions (fast
and slow milling) that can be used to assert milled(p). Hence
the aggregate probability of milled(p), calculated using the
formula given in equation 1 is 0.98. This probability can
then be further propagated to derive 0.68 and 0.78 as the
estimates for painted(p) and finished(p) respectively.

In a relaxed plan-graph, since there are no delete effects
represented, each proposition, once it appears at a particu-
lar level, is repeated in every succeeding level. Similarly,

actions can be repeated at each level as well. Therefore the
probability of a proposition increases from the first level that
it appears and asymptotically approaches 1.0. The probabil-
ity estimates can use either the probability of a proposition at
the first level or any level after. However, using a probability
from a level higher than the first level could be an estimate
based on actions needing to be repeated which, given that
there are no delete effects represented, may not be feasible.

In this present work, the probability estimates for propo-
sitions are calculated without assuming that actions can be
repeated. Additionally, multiple mechanisms of producing
a proposition are assumed independent. Furthermore, mu-
texes are not considered. Because of these assumptions, the
probability estimates do not definitely under or over estimate
and hence are not an admissible heuristic.

PVHPOP
The algorithm underlying PVHPOP is similar to the basic
POCL planning algorithm except for an additional step of
creating a relaxed plan-graph in which probability estimates
are calculated for all the propositions. The planning process
starts with a partial plan consisting of a dummy INITIAL
step whose effects are all the initial conditions and a dummy
GOAL step whose preconditions are the goal propositions,
as well as the initial unsatisfied open conditions. A particu-
lar open condition is selected and partial plans are produced
which each incorporate a different way of supporting the se-
lected open condition. Then, a particular child is selected as
the next current plan and the process continues. Actions that
modify propositions needed by other actions are considered
threats(flaws) and have to be resolved. In the probabilistic
version, a plan is deemed complete, if all the threats are
resolved and all open conditions are at least supported once.
When the plan is complete, a check is made to ensure that
the plan has a probability greater than the threshold. If
not, the search continues. This algorithm is described below:

PVHPOP(
	 �

,
�

,
�
)

1. Create relaxed plan-graph and estimate probability of
propositions.

2. Initialize: %'&��(� 	 ��) ��* =
	 ��+ �

.

3. While (Probability (%'&��(� 	 ��) �#* � �
) do

4. SELECT a flaw in %'&��,� 	 ��) ��* to resolve.

5. Generate children of %'&��(� 	 ��) ��* by
different flaw resolutions.

6. SELECT a child to be %'&��(� 	 ��) ��*
7. endWhile

8. return %'&��(� 	 ��) ��*
The PVHPOP algorithm is different from the standard

POCL algorithm in steps 4,5 and 6. In step 5, the children of
the current plan are generated. There are two alternate ways
of doing this. Some previous approaches (Mahinur for ex-
ample) initially develop a plan to completion such that there
are no threats and every open condition is supported exactly
by one causal link. They then try to improve the quality of

3

Step−1

q

r

GOAL

Step−2
a

b

Figure 2: A partial plan

this plan by selectively reopening supported open conditions
for additional support.

An alternative method is to create another child plan
where the condition is left open in addition to being sup-
ported. For example, let proposition) be an open condition
in plan ��� that has been selected for resolution. Then child
plans ��� and ��� are created where) is resolved by adding a
step and adding a link respectively. Additionally, child plans
��� and �	� are created. ��� is the same plan as �	� but addi-
tionally with a copy of) still left as an open condition. This
provides the planner the ability during search to multiply
support a proposition.

The SELECT in steps 4 and 6 represent non-deterministic
choices. In this work, we focus only on the choice of the
child plan (in line 6) using a combination of least refine-
ments and most work involved as the heuristic for flaw se-
lection. This plan selection is made by selecting the highest
ranking child plan, where the ranking is a function of the
probability estimate of the plan.

The probability estimate of the plan is calculated in the
following manner. The propositions that are open condi-
tions in the plan are assigned the probability as estimated
from the plan-graph. These probabilities are then propa-
gated forward towards the goal along the causal links in the
plan. Consider the partial plan in figure 2. The circles repre-
sent propositions and the rectangles represent actions. The
dashed lines represent open conditions and the solid lines
represent causal effects. The goal propositions of � and �
are represented as open conditions of a special GOAL ac-
tion. From the plan-graph, ��
 and ��� are estimated. The
probability of � is then calculated as

� ���� � � ��� �
 ��� �� (2)
where � �� is the probability of the effect of Step-1. Similarly,
the probability of � is calculated as �� * � � � . The final prob-
ability of the goal is then calculated as the product of the
probability of � and � :� ���� � ��� ��� � � � ���� � � + � �����	
���� �� ��������� � � (3)

Since the actions are assumed to be independent, the differ-
ent orders of execution of actions does not impact the prob-
ability estimate.

Plan Rank Heuristics
The estimate of the probability of a plan is used in a plan
ranking function to guide the planner. We implemented two
heuristics, the additive and the ratio heuristic. Both these
heuristics balance the need to find plans with higher prob-
ability of success with the desire to find the plans that are
efficient to execute.

Additive Heuristic
The additive heuristic for plan rank is given by the following
formula.

�) ��*�� ��*���� ��� � � � � ���� � ��� 	�� �� � � ��� (4)

Prob(p) is the probability estimate of the partial plan and
Cost(p) is the sum of costs of all the actions in the plan. � is
a weighting factor to balance the influence of the cost over
the probability. While the value calculated for the plan rank
using this heuristic does not have a clear semantic, it seems
to perform well in practice.

Ratio Heuristic
The ratio heuristic was inspired by a paper by Simon and
Kadane(Simon & Kadane 1975). They used the ratio of the
value of goals over the sum of their costs to decide which set
of goals to pursue. The ratio provides a feel for the increase
in cost needs to increase probability. This heuristic is very
sensitive to the cost/probability trade-off. However, it does
not seem to perform very well when the focus is skewed to
either only probability or only cost. This issue is further
discussed in the experiments section. The ratio heuristic for
plan rank is given by the following formula:

�) ��*�� ��*���� ��� � � ���� � ����� � �� � � ��� (5)

Experiments
PVHPOP was implemented by modifying the deterministic
POCL planner called VHPOP (Younes & Simmons 2002).
VHPOP is versatile planner that has support for many dif-
ferent kinds of heuristics including a relaxed plan-graph.
The main planning algorithm was enhanced by the forward
probability assessment algorithm while the plan-graph was
modified to support the propagation of probabilities for each
proposition. The planner was also configured to ground all
actions.

Both the Additive and Ratio heuristics were implemented
for use as a plan-ranking functions. The set of heuristics
provided by VHPOP for flaw selection were left unchanged.
These heuristics were set at a fixed setting for all experi-
ments.

In order to test the performance of PVHPOP, a simple
factory domain was created. It consists of parts that can
be milled and ground. The milling and grinding actions
come in two speeds: fast and slow. Hence there are 4 dis-
tinct action types. Problems of increasing size can be eas-
ily constructed by increasing the number of parts in the do-
main. The costs of the actions ranged between 100 to 200.
The weighting constant for the additive heuristic was set at
10000. An important feature of this domain is the all actions
are repeatable. The domain and the problems were repre-
sented in PDDL. The probability and cost information were
stored in associated files and provided to the planner.

The first set of experiments were to compare the efficacy
of the two different heuristics. The second set focused on a
comparison between Cassandra’s POMDP solver and PVH-
POP. The POMDP solver is currently the best available for

4

 0.001

 0.01

 0.1

 1

 10

 100

 1 2 3 4

T
im

e
(s

)

Problem No.

Ratio
Additive

Figure 3: Additive versus ratio heuristic

solving the optimal version of the CPP and outperforms CP-
Plan in both the SlipperyGripper and SandCastle (Majercik
& Littman 1998) domains.

Comparison of the PG heuristics

PVHPOP was provided a range of problems of increasing
size and the 2 different heuristics were used. The probability
threshold was fixed at 0.9. As can be seen from Figure 3, the
additive heuristic performs significantly better than the ratio
heuristic. One explanation could be that the emphasis on
probability or cost can be for finely controlled by modifying
the weight in the additive heuristic. Note that the Y axis is
in logarithmic scale.

The ratio heuristic on the other hand seemed to perform
reasonably well in experiments where the probability was
varied from 0.5. to 0.99 as can be seen in Figure 4. Each
curve is represents the computation time as a function of
the probability threshold. As the threshold increases, the
computation time increases eventually becoming too large
as the threshold becomes close to 1.0

 0.001

 0.01

 0.1

 1

 10

 100

 0.5 0.6 0.7 0.8 0.9 0.95 0.99

T
im

e
(s

)

Probability Threshold

c
b
d
a

Figure 4: Ratio heuristic over a range of probability thresh-
olds

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0 10 20 30 40 50 60 70

T
im

e
(s

)

No. of states

PVHPOP
POMDP

Figure 5: POMDP vs PVHPOP (threshold)

Comparison with POMDP
In order to compare PVHPOP with the POMDP solver, the
problems encoded in PDDL were translated into the state-
space representation used by the POMDP solver. This rep-
resentation consists of the set of states, actions and transi-
tion probabilities when a particular action is executed in a
particular state. The POMDP solver was configured to as-
sign reward of 0 to every stage except the final stage and
was assigned a discount factor of 1.0. The actions were
all grounded based on the number of parts in the domain.
Three problems consisting of 1,2 and 3 parts were used. In
the state-space representation, they correspond to 4, 16 and
64 states. The POMDP solver was run for different hori-
zons and the probability of the goal state was recorded. This
probability was set as the probability threshold for PVHPOP
and the additive heuristic was used.

As can be seen from Figure 5, PVHPOP scales extremely
well compared to the POMDP solver. The plan-graph based
additive heuristic is able to effectively guide the planner to
select plans that evaluate to a probability greater than the
threshold. This performance is similar to the result derived
by CAltAlt (Bryce & Kambhampati 2003) for conformant
planning problems (non-probabilistic).

The POMDP solver looks for every plan of a particular
length(the horizon) and uses the Bellman Optimality princi-
ple to generate the optimal k length plan from the optimal
k-1 length plan. In each stage of its calculation, it eliminates
actions that cannot be part of any optimal plan. However,
since the state-space grows exponentially in the number of
parts in the domain, the benefit of the optimality principle is
overwhelmed by the sheer size of the space. This POMDP
solver does not incorporate reachability analysis or abstrac-
tion techniques that can reduce the state-space.

An obvious question to ask is how does PVHPOP perform
when the probability threshold is increased such that it gets
closer to the optimal. Figure 6 shows such a comparison
where the probability threshold was increased in step with
increasing the horizon of the POMDP solver. The domain
used was the SlipperyGripper because it was small domain.

As the threshold gets higher, the performance of PVHPOP
deteriorates and eventually becomes worse than the POMDP

5

 0.001

 0.01

 0.1

 1

 10

 100

 4 6 8 10 12 14 16

T
im

e
(s

)

Horizon

POMDP vs PVHPOP (SlipperyGripper)

PVHPOP
POMDP

Figure 6: POMDP vs PVHPOP (optimal plan)

solver. This is because PVHPOP has to search many more
plan candidates in order to find one that is above the high
probability threshold. This result is similar to that identified
in (Hyfil & Bacchus 2003). We use a similar argument in
that the Bellman principle and the development of a k step
plan from the best k-1 step plan significantly enhances the
performance of the POMDP solver. PVHPOP can perhaps
benefit from a beam search (where not all the children are
evaluated) and caching of previously identified good plans
for further enhancement.

Discussion
Probabilistic POCL planning guided by plan-graph based
heuristics performs very well in solving the variant of the
conformant probabilistic planning problem where the objec-
tive is to find a plan with a probability of goal achievement
above a threshold. This technique also scales very well to
larger problems. The heuristics used, though very simple,
were able to efficiently guide the planner to find suitable
plans. These results mirror the performance of plan-graph
based heuristics in both the deterministic planning and non-
probabilistic conformant planning areas. However, this tech-
nique as implemented has some limitations when asked to
find very close to optimal plans.

The CPP problem as defined in this paper requires the
planner to find a sequence of actions whose probability of
goal achievement is greater than a threshold. In order to do
this, PVHPOP constructively searches the space of plans,
expanding plans selected based on the plan-graph heuristic.
Since there is no requirement to find the optimal plan, it is
not necessary to work on every possible partial plan to prove
that the plan found is optimal.

State-space based techniques like the POMDP inherently
are meant to be used to find the optimal plan. They keep
track of each state and the transition from each state to others
during every plan stage, pruning clearly dominated actions
and using the compact representation of the alpha vectors to
keep track of which action is optimal in which belief state.
The most significant drawback that these techniques suffer
from is the exponential blow up of the state space with re-
spect to the problem size. Current and ongoing research has

focused on addressing this drawback using the techniques of
abstraction and reachability analysis.

Plan-graphs provide a abstract representation of the state-
space as well as allow the performance of reachability anal-
ysis. Hence the POCL planning with plan-graph heuris-
tics combine the scalability from searching in the plan-space
with the efficiency of a better heuristic.

Future Work
While PVHPOP performs well in terms of computational
time, it does consume significant amount of memory since it
keeps all the partial plans. Implementing a beam search of
size n where only the top n partial plans are stored will sig-
nificantly reduce the memory requirements. Another area of
research is to evaluate additional heuristics. Heuristics based
on a relaxed plan derived from a plan-graph have shown
promise in deterministic conformant planning.

There have been several choices made in PVHPOP that
could potentially have a significant impact on performance
if they were changed. For example, it would be interesting
to study the impact of reopening supported open conditions
after a plan is complete instead of continuing to keep the
supported open conditions as open during the planning. An-
other improvement could be to perform the probability as-
sessment of partial plans incrementally by caching the eval-
uation of the parent plan. A third aspect is the use of lifted
actions instead of grounding them.

Assuming independence of actions, which in many real
domains is not true, has a significant impact on the probabil-
ity assessment. Therefore, an important advance would be
to study the issue of retracting this assumption.

A significant question that has not yet been addressed by
this research is the impact of flaw selection on the plan. Se-
lecting flaws based on the impact they may have on the over-
all probability may significantly increase the performance
and the quality of the plans produced. For example, it may
be useful to only reopen flaws that are on the critical path to
the goal rather than choosing a flaw based on the number of
refinements or the amount of effort involved.

Acknowledgments
We would like to acknowledge the support of the NASA
Intelligent Systems Program for their support. We would
also like to thank Nathanael Hyafil for help with using the
POMDP solver.

References
Bertoli, P.; Cimatti, A.; Pistore, M.; Roveri, M.; and
Traverso, P. 2001. Mbp: a model based planner.
Blum, A., and Langford, J. 1999. Probabilistic planning in
the graphplan framework. In ECP, 319–332.

Blythe, J. 1998. Planning under Uncertainty in Dynamic
Domains. Ph.D. Dissertation, Carnegie Mellon University.

Bryce, D., and Kambhampati, S. 2003. Planning graph
heuristics for scaling up conformant planning. In ICAPS-
03 workshop on Planning under Uncertainty and Incom-
plete Information, 18–27.

6

Cassandra, A. pomdp-solve. http://www.cs.
brown.edu/research /ai/pomdp/code/index.html.
Draper, D.; Hanks, S.; and Weld, D. 1994. Probabilistic
planning with information gathering and contingent exe-
cution. In Hammond, K., ed., Proceedings of the Second
International Conference on AI Planning Systems, 31–36.
Menlo Park, California: American Association for Artifi-
cial Intelligence.
Hyfil, N., and Bacchus, F. 2003. Conformant probabilistic
planning via csps. In ICAPS-03, 205–214.
Kushmerick, N.; Hanks, S.; and Weld, D. S. 1995. An
algorithm for probabilistic planning. Artificial Intelligence
76(1-2):239–286.
Majercik, S. M., and Littman, M. L. 1998. MAXPLAN: A
new approach to probabilistic planning. In Artificial Intel-
ligence Planning Systems, 86–93.
Onder, N., and Pollack, M. E. 1999. Conditional, proba-
bilistic planning: A unifying algorithm and effective search
control mechanisms. In AAAI/IAAI, 577–584.
Simon, H. A., and Kadane, J. B. 1975. Optimal problems-
solving search: All-or-none solutions. Artificial Intelli-
gence 6:235–247.
Smith, D., and Weld, D. 1998. Conformant graphplan. In
Proceedings of the Fifteenth National Conference on Arti-
ficial Intelligence, 889–896.
Younes, H. L. S., and Simmons, R. G. 2002. On the
role of ground actions in refinement planning. In Ghal-
lab, M.; Hertzberg, J.; and Traverso, P., eds., Proceedings
of the Sixth International Conference on Artificial Intelli-
gence Planning and Scheduling Systems, 54–61.

7

